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Metamorphosis, also known as morphing, is the gradual transformation of one
shape into another. This thesis deals with metamorphosis of 3-D genus zero polyhe-
dral models. Metamorphosis of polyhedral models generally consists of two subprob-
lems: the correspondence problem and the interpolation problem. A correspondence
specifies which face, edge, or vertex of one model is mapped to which face, edge,
or vertex of the other model. A correspondence algorithm determines a suitable
correspondence between the two models. The interpolation algorithm determines
how the faces, edges and vertices are transformed during the animation according

to a particular correspondence.

This thesis introduces intrinsic shape parameters into 3-D metamorphosis, and
also proposes a set of criteria that a metamorphosis algorithm should satisfy —
identity preserving, rotation invariant, translation invariant, and feature preserving.
The application of the intrinsic parameters to metamorphosis of polyhedral models
is realized by (1) using graph-based representations for polyhedral models, and (2)

selecting intrinsic shape parameters to describe the interrelation between the nodes



in the graphs representations. A polyhedral model is considered as a planar graph
representing the interrelations between vertices, called the vertex adjacency graph.
The dual of this planar graph, called the face adjacency graph, is also used, repre-
senting the interrelations between faces. Interrelating the vertices and faces in the
two graphs, intrinsic shape parameters, such as dihedral angles and edge lengths,
are used for interpolation. Shape metrics based on intrinsic shape parameters and

the two intrinsic representations for polyhedral models are defined.

A solution to the interpolation problem using intrinsic shape parameters is pre-
sented and discussed. The interpolation algorithm works for a general one-to-one
correspondence, and experience shows that it preserves the features during interpo-
lation, avoids unnatural shrinkage and flipping inside out in the morphing process,
and produces more satisfactory results than other existing techniques. Finally, an

approach to the correspondence problem is presented.

KEYWORDS: Metamorphosis, Computer Animation, Interpolation, Shape
Transformation, Object Representation, Planar Graph, Shape

Metric, Correspondence
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Chapter 1

Introduction

1.1 Background

Recently, metamorphosis has emerged as a hot topic in computer graphics. It is the
process of smoothly transforming one object to another, and is also known as mor-
phing '. The concept is best illustrated by figures. In Fig. 1.1, the leftmost object
is morphed into the rightmost. There is no restriction on how one object should be
morphed into another, and the upper and lower sequences show the metamorphosis

in two possible manners.

Metamorphosis of 3-D objects is useful in achieving special effects in computer
animation [27], animation of biological evolution [21], and can also be used to create
new models combining features of existing designs in industrial design [7]. Although
metamorphosis of 2-D projected images of 3-D objects [3, 47] may be able to pro-
duce visually similar effects, morphing of the 3-D models, instead of their projected
images, allows the animation to be independent of projection transformation, and

thus the view point used, and it also gives the shape of the morphed objects. This is

!Morphing originally refers to the metamorphosis of images rather than objects. However,

people nowadays use these two terms interchangeably.



In this thesis, a correspondence specification is formulated. An approach to
the correspondence problem and preliminary solutions to the interpolation problem
using intrinsic shape parameters are presented. Finally, a more sophisticated in-
terpolation algorithm is presented. Unlike [41], our interpolation algorithm is not
restricted to one-to-one correspondence, and experience shows that it preserves ob-
ject features during interpolation, and avoids unnatural shrinkage and flipping inside

out in the morphing process.

1.4 Overview of This Thesis

This thesis is organized as a progressive study of our approach using intrinsic shape
parameters. Each chapter shows a stage in the research and is based on the foun-

dation provided by the previous chapters.

Chapter 2 surveys the related previous work on the problem of metamorphosis.
This survey is not exhaustive, but serves to set the context for the contributions of

this thesis and also summarizes the problems and difficulties of this topic.

The focus in Chapter 3 is on establishing the direction of the research that
takes into account the problems uncovered by the analysis in Chapter 2. In this
chapter, criteria for the solutions to the problem are also proposed as the base of
our research. It is hoped that these criteria will be useful in future in developing

new metamorphosis algorithms.

Chapter 4 discusses the new representations for polyhedral models used in our
morphing algorithm. These representations are also part of our contribution, and

they form underlying structures that enable the use of intrinsic shape parameters.

The aim of Chapter 5 is to present the interpolation algorithms using intrinsic
shape parameters. The use of two different sets of intrinsic shape parameters is

discussed. Some preliminary results and problems encountered are also discussed.



A more sophisticated interpolation algorithm is discussed in detail in Chapter 6.

We will call it the two-phase intrinsic interpolation [44].

Chapter 7 develops shape metrics for correspondence algorithms based on the
intrinsic parameters. Some preliminary results and problems encountered are also

discussed.

Chapter 8 concludes this thesis with a summary of the main results of the thesis

and comments on future research.



Chapter 2

Related Work

Dynamic and kinematic animation, and simulation of evolution, like metamorphosis,
can be used to change the shape of an object but their methods rely on information
that is not used by metamorphosis methods, such as physical laws [2, 37], key frames,
reference skeletons [45], moving point constraints [38], and evolution behaviors [8].
The first metamorphosis algorithm appeared in 1988 in [21]. Subsequently, many
techniques of metamorphosis [5, 7, 6, 10, 12, 18, 24, 27, 28, 29, 30, 40, 41] have
been proposed. It is interesting to note that nearly all techniques are different in
nature and bear very little similarity among them. The basic assumptions, criteria
for producing the in-between objects, and the shape parameters to be interpolated

in these techniques are completely different.

Most existing morphing algorithms solve the correspondence and the interpo-
lation problems in separate steps. The only exceptions are the Minkowski sum
technique and the alpha shape geometric morphing, in which the correspondence
and interpolation problems are coupled and solved together. However, theoretically,
we can recognize that they use linear interpolation carried out in E3 or E%. So we
will separate the discussion in two parts: the correspondence and the interpolation.
We will first focus on the approaches to the correspondence problem and then those

to the interpolation problem. In the discussion, we will concentrate on techniques
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that produce an in-between object that is topologically well-defined, rather than
just a set of points in space. So techniques that are based on voxels [30], volume

models [32], or Fourier transform [24], will not be considered.

2.1 Problem Definition

Throughout this thesis, A and B will denote the two input objects. Unless otherwise
specified, the objects are polyhedral models. In the metamorphosis between A and
B, we transform A to B continuously from ¢ = 0 to ¢ = 1 under a prescribed

correspondence between the vertices of A and B.

Definition 2.1 A polyhedral model is said to be topologically valid or topologically
well-defined if the model satisfies the following properties:

1. each edge is incident to two and only two vertices;

2. each edge is incident to two and only two faces;

3. there is at most one edge incident to both of two given vertices;

4. each vertex is incident to at least three faces;

5. each face is incident to at least three vertices.

2.1.1 Correspondence and Interpolation

This section introduces the reader to the concept of correspondence and interpola-
tion. For illustration, consider examples of metamorphosis of 2-D polygons. In Fig.
2.1 and 2.2. two different correspondences are used and shown in two correspon-

dence matrices [40]. The rows and columns represent vertices of the input polygons



A = [Ao, Ai,...,An—1] and B = [By, B, ..., B,_1], respectively. The whole corre-
spondence is specified by a correspondence path, which consists of consecutive line
segments going through the correspondence matrix as shown in Fig. 2.1 and 2.2.
Each grid point [z, 7] represents a vertex correspondence between A; and B;. A line
segment ([z, 7], [¢,7 + 1]) represents a correspondence between vertex A; and edge
B;Bji1; a line segment ([¢, 5], [z + 1,]) represents a correspondence between edge
A;Aiyy and vertex Bj; and a segment ([¢, 5], [t4+1, 7+1]) represents a correspondence
between edge A;A;+1 and edge B;B;y1. In Fig. 2.1, the linear vertex path is used

for interpolation; in Fig. 2.2, the animation is done by a rotation.

A
0123450
4 3B 0 s
1
A 3 2 4 3 B
3
4
! 2 % 1 2
t=0.00 0 t=1.00
4 3
0
o5 4.3 3 4 3
1 2 1 2 1 2
t=0.25 1=0.50 =075

Figure 2.1: Correspondence Example 1

While the correspondence matrix can be used to represent 2-D correspondence,
unfortunately, there is so far no effective representation for correspondence of 3-D

polyhedral models.

2.2 Previous Work on Correspondence

The existing approaches to the correspondence problem can be generally classified

into the following categories: (a) using a quantitative approach to measure the shape
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Figure 2.2: Correspondence Example 2

difference and finding the correspondence with the minimum measure; (b) using a
heuristic to find two models with the same topology but each having the same shape

as one of the input objects; (c) using geometric information only; and (d) others.

2.2.1 Using Metrics on Shape Difference

A correspondence specifies which vertex, edge, and face of one object will also be
transformed into which vertices, edges, or faces of the other object. Usually, when
the correspondence is different, the transformation and the in-between shapes will
also be different. It would be very ideal if we could find a correspondence such
that the in-between object’s shape difference between A and B is minimized. In
the approach of using metrics on shape difference, there is a tentative shape metric
associated with each correspondence. The correspondence with the minimal shape
difference is the one we will use for interpolation. Although shape difference has
been extensively investigated [14, 15, 16, 22, 26, 36, 39, 42, 48, 49], no universal
shape metric exists. That is because how much one shape is different from another

is very subjective.
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The techniques of minimizing the distances between corresponding face centroids
and vertex pairs [21] and intrinsic shape interpolation [40] use different shape metrics

and are discussed in the following sections.

(a) Minimizing distances of corresponding face centroids and vertex pairs

It was proposed in [21] to use the distances between corresponding face centroids and
vertex pairs as the measure of shape difference. The correspondence is established
first at the face level and then at the vertex level. In establishing correspondence
at the face level, A and B are first normalized: A and B are scaled so that their
farthest face centroids from the origin are both 1 and their centers of gravity of the
respective set of the face centroids are both at the origin. The faces are matched
by establishing a bijection g from the set of face centroids of A to the set of face
centroids of B such that Y |la; — g(a;)||* is minimized, where a; is a face centroid
of A, g(a;) is a face centroid of B, and g is some constant. When one object, A
say, has more faces than B, the extra faces of A are matched to the face of B
that corresponds to the extra faces’ closest neighbours. Similarly, the vertices of
corresponding faces are matched by minimizing the distances of the corresponding

vertices.

Remarks. Based on the face centroid coordinates and vertex coordinates, this met-
ric depends on the relative orientation of the two inputs. Thus, the correspondence
algorithm is not rotation invariant. Besides, if we change one vertex of an input
polyhedral model and keep all other vertices unchanged, the normalized vertices or
centroids will be changed as the center of gravity is changed. This small change can
result in a big change in the minimization. Moreover, as mentioned in [28], the faces
of the in-between model may consist of isolated faces, because this metric ignores

the topologies of the objects in establishing the correspondence of the faces.

12



(b) Physically based shape blending

The physically based shape blending [40] works only for 2-D polygons. We include

it here as it provides some insights into the morphing of 3-D polyhedral models.

The physically based shape blending [40] measures shape difference by the work
done required to transform one object into the object. Two kinds of work done are
considered: (1) work for stretching each pair of corresponding line segments and,
(2) work for bending each pair of corresponding interior angles. Stretching an edge
from length L4 to Lp requires the work

|La— Lp|*
(1 — ¢s)min(Ly4, L) + comax(La, Lp)

W, =k,

where ks, ¢, and e, are user-defined constants. The work to bend an angle 6(t) from

t =0 tot =1, where §(0) = 64 and 6(1) = 6p, is similarly defined by

ky (86 + mp60™)° if 6(t) never goes to zero
ky (86 + mpb6*)°® + py  otherwise

where ky, ep, my, py are user-defined constants, 66 = |64 — 0|, 60* measures how far
6(t) deviates from montonicity, m; penalizes non-monotonic 4(t), and p, penalizes

if 8(t) ever goes to zero.

Remarks. The metric of shape difference in the physically based shape blending
[40] is based on edge lengths and internal angles. Since the edge lengths and in-
ternal angles between adjacent edges are invariant under translation and rotation,
the metric is invariant under translation and rotation. This resolves the situation in
Fig. 1.2 as the correspondence is independent of the relative orientation. Moreover,
each parameter is locally defined. The disadvantage of the dependence on absolute
coordinates in the technique of minimizing the distances of corresponding face cen-

troids and vertex pairs [21] is thus overcome. However, this method works only for

2-D polygons.
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(c) Discussion

The technique of minimizing distances of corresponding face centroids and vertex
pairs [21] and physically based shape blending [40] use two different metrics to
measure shape difference. The design of a good shape metric is crucial to using the
approach of shape metric. However, it is hard to design a good metric. Besides,
this approach has the disadvantage that the minimization computation is expensive.

This makes real-time computation and real-time animation impossible.

2.2.2 Merging Topology by Heuristics

The approach of merging topology aims to solve a major difficulty in metamorphosis
— the topologies of the two input polyhedral models are different in general. The
difficulty is overcome by finding two auxiliary objects with the same topologies but

each having the same shape as one of the input objects.

This approach includes the projection methods [28, 29], the super-object tech-

nique [5], and the technique using contours [7].

(a) Projection methods

Several morphing techniques making use of projection are proposed in [28, 29]. In
these techniques, the topologies of the two input polyhedral models are merged
as follows: (1) obtain projected models of the input models by projecting the in-
put models’ vertex/edge/face network onto the surface of unit sphere; (2) the two
projected models are merged by clipping the projected faces of one object against
the projected faces of the other; (3) a common network model is then obtained by

mapping the merged model back to the original surfaces of the input models.

When the method of projection is first introduced [28], it applies to star-shaped

polyhedra only and the central projection is used. Using different projection map-

14



pings for different classes of objects is proposed in a later work [29]. For example,
in dealing with extruded objects, the cross section can be mapped to its convex
hull by a method that recursively reduces concavities of a 2-D polygon [13]. The
resulting convex model is projected to the unit sphere using a central projection.
Another physically based approach is also introduced in [29] as an alternative to
the projection methods above when they cannot apply. It is designed to deal with
polyhedra without specific characteristics, such as being star-shaped or extruded.
Treating an object as having flexible surfaces, it simulates the process of inflating
the model until it becomes convex. Vertices and edges are treated as masses and
springs respectively, and spring force is applied along an edge together with inter-
nal air pressure applied to the centroid of each face in the direction of its outward

normal.

Remarks. In establishing a correspondence between objects with similar features,
the features may not be matched correctly by the projection methods [28, 29]. More-
over, the projection method [28] is limited to a special class of objects, star-shaped
polyhedra. Although some solutions have been proposed for the class of extruded
objects in [29], we do not believe that making use of more and more heuristics
and model knowledges will lead to good solutions to the correspondence problem.
Moreover, the techniques using projection are difficult to be extended to general
polyhedral models, such as the one as simple as in Fig. 2.3. Although the simula-
tion method in [29] is proposed to solve this problem, it is time-consuming to run
the simulation and still unknown what class of objects this simulation can apply to;
moreover, it is not always possible to inflate a polyhedral model to become convex.
In some cases, whether this method works becomes known only after the simulation

has been carried out.

(b) Super-object

The super-object technique [5] aims to find two auxiliary models, called super-

objects, such that their topologies are the same, each of them is in the same shape

15



2.2.3 Using Geometric Information Only

In the approach of using geometric information, the shape of the object is considered
as a set of points. The in-between object depends on the geometry of the input
objects. The Minkowski sum technique [27] and the alpha shape geometric morphing
[12] use this approach.

(a) Using the Minkowski sum

In the technique using the Minkowski sum, the correspondence and interpolation
problems are coupled and solved simultaneously. For any A and B C R, the
Minkowski sum, ! denoted A @ B, is defined to be {a + bla € A,b € B}. The
in-between model at time ¢ is defined to be (1 —¢) * A @t * B, denoted as A &, B,

where the “+” operator denotes the scaling of a set.

Assume A and B to be polyhedral models. The algorithm to compute A @, B is
based on the propositions that any face of A® B can be expressed as V4@ Fg, F1®Vp
or E4 @ Epg, for some vertex V4, edge FEy4, face F4 in A and some vertex Vg, edge
Eg, face Fg in B. These faces are said to be of type VF, FV, and EE, respectively.
That is, we can compute a superset of the faces of A @; B by considering all the
VF, FV, and EE faces. It can also be proven that the boundary of the Minkowski
sum of two polyhedra is a subset of the boundary of the Minkowski sum of their
boundaries. Therefore, the in-between object can be displayed by rendering all the
faces in the superset. By considering the orientation of the faces, vertices, and edges
of the polyhedra, we can improve the efficiency of the algorithm but we will not

cover the details here.

Remarks. From the theoretical point of view, the correspondence in the Minkowski
sum technique [27] is such that each point contained in the 3-D model of one object

corresponds to every point contained in the other one. Thus, we have a many-to-

1 Properties of Minkowski sum can be found in [20].
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many correspondence and this results in a lack of locality. This is why the Minkowski

sum technique [27] fails to produce the identity correspondence in Fig. 1.3.

(b) The geometric morphing of alpha shapes

In the geometric morphing of alpha shapes [12], the two input models given to the
morphing algorithm are in the form of alpha shapes 2. The alpha complexes of A and
B are projected to two complexes on a paraboloid in ®*, and these are interpolated
in ®* using Minkowski sum and the resulting complex is projected back in 2 to
form the mixed complex. Finally, the in-between object is computed as the alpha

shape of the mixed complex.

Remarks. It should be noted that although for every polyhedron there exists a
finite set of points and a value of « so that the polyhedron is the a-shape of the
point set [12], there is no known algorithm to find this set of points and the « for a

given polyhedron.

Unlike the technique of Minkowski sum [27], the alpha shape morphing [12] is
identity preserving and this is achieved by the use of standard methods from convex
geometry [17] in dealing with non-convexity. However, as the topological information

is also considered, the resulted in-between model may be disconnected.

(c) Discussion

The approaches using geometry information only are based on well understood con-
cepts, Minkowski sum and alpha shapes, and can be formulated rigorously. The
approach can also apply to all 3-D objects. However, as mentioned in the sections

above, these techniques suffer from topological problems.

2Refer to [11, 12] for the definition and properties of alpha shapes and alpha complexes.
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2.2.4 Miscellaneous Techniques
Simplex-based animation

Animating transformation of models in [10] is based on the simplez mesh represen-
tation of objects. A simplex mesh can be considered as a network of independent
particles with fixed connectivities. The simplex mesh, like triangulations, can rep-

resent all orientable surfaces.

Transformation of a simplex mesh involves (1) the dynamics of each vertex gov-
erned by some internal and external constraint forces; and (2) mesh transformation
operations that alter the structure of the mesh. The dynamics of a vertex P; of the

simplex mesh is given by

&P, dP,

+Fint+Fea:t

e T T a
where ¢ is the time, m is the mass of the node, v is the damping factor, Fi,; is the
internal constraint force, and Fi,; is the external force set by the user or some other
constraints. The internal constraint force is defined by some shape parameters of the
mesh and it brings the mesh to its rest shape when no external constraint is applied.
Simplex mesh structures can be locally modified without exhibiting any irregularity
in the mesh connectivity. There are four basic mesh transformation operations to
transform one mesh to another: edge removal, face splitting, handle creation, and

handle removal.

The simplex mesh representing A is first fit on object B by setting an attractive
external force that drags the surface model of A close to the 3-D data of B, and then
the mesh is modified interactively by a sequence of the basic mesh transformation
operations for it to have the precise shape of B. To animate the metamorphosis, the
sequence of basic transformations obtained by the fitting process above is applied
to the simplex mesh of A. Then the shape parameters defining internal constraint
force of B are then assigned to the resulting mesh. The internal constraint force

F,; then brings the mesh to the shape of B.
20



The problem with the simplex-based animation is that it is unknown how to
automatically find out the sequence of the basic mesh transformation operations to

have the precise shape of B.

2.3 Previous Work on Interpolation

2.3.1 Existing Solutions to Interpolation Problems

Although the approaches to correspondence problem are very diversed, most existing
techniques for solving the interpolation problem fall into one of the following three
categories: (a) linear vertex path; (b) independent interpolation of each vertex pair

using a curved path; (c) intrinsic shape interpolation.

(a) Linear vertex path

In the linear vertex path, each corresponding vertex pair is linearly interpolated
independently. It is the most widely used technique in practice. The super-object
technique [5], and the method of minimizing the distances of corresponding face
centroids and vertex pairs [21] all use the linear vertex path. It is simple, computa-
tionally inexpensive, suitable for real-time animation, and works well for morphing

highly dissimilar objects.

In the super-object technique [5] and the technique of minimizing the distances
of corresponding centroids and vertices [21], the interpolation algorithms consider
an object as a collection of independent points. Shrinkage usually occurs for two
objects that differ by a rotation. For example, consider the metamorphosis of two
congruent tetrahedra, one of which is 180° opposite to the other. In this case, an
in-between tetrahedron can even flip totally inside out. Figure 2.4 shows morphing
one tetrahedron into another similar one at time ¢t = 0,0.2,0.4,0.6,0.8,1, from right

to left. The instance at ¢t = 0.4 flips totally inside out.
21



Chapter 3

Basic Criteria

3.1 Direction of Research

Intuitively, an animation of metamorphosis should be smooth. Although human
beings can easily tell whether a morphing process is visually smooth or not, trans-
lating the human perception into qualitative criteria is difficult. Different ways of
animation may please people with different tastes. For example, it is hard to say
any of the two ways of morphing in Fig. 1.1 is better than the other. However, we
believe that there are some basic criteria that a morphing algorithm should satisfy.

We propose four such criteria in this chapter to serve as the starting point of our

research.

In analyzing the correspondence problem of 3-D objects, some observations stand
out. First, features of the two objects are ignored in all the existing metamorphosis
algorithms when setting up the correspondence. All the existing 3-D metamorphosis
algorithms are not designed to match the features. Second, just like the morphing
techniques in [12, 21, 27], using only geometry of the objects suffers from topolog-
ical problems: probably topologically disconnected in-between objects or failure to

preserve local properties. Last, using only topologically information also has its
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problems. Established using the topologies of input polyhedral models only, the
correspondence used by the super-object method[5] often causes distortion in the

animation.

As for the interpolation problem, only very simple techniques for interpolating
3-D objects — the linear vertex path and the curved path - are available. These
interpolation techniques assume that the polyhedral models to be interpolated are
just a set of independent points, ignoring the topological structure and the inter-
relations between the points, and thus usually result in distorted and unnaturally
shrunk in-between objects. An example of morphing using the linear vertex path is
shown in Fig. 2.4, where polyhedral models of the similar shapes but of different

orientations are transformed.

In this thesis, the success of the 2-D physically-based shape blending [40] and
intrinsic shape interpolation [41] is examined and extended. Although this extension
leads to a very expensive algorithm, it has the capability of solving a lot of problems
that are not solved by other approaches. Following this framework, we use the
approach of minimizing the metric defined in terms of intrinsic shape parameters

and the approach of topological merging in establishing correspondence.

3.2 Basic Criteria

Although there is no consensus on how to morph objects, we believe that there are
some basic criteria a metamorphosis algorithm must satisfy. For instance, when the
two input objects are identical, the in-between model should always be the same as
the input objects. We call this property identity preserving. The shape of the in-
between model should also be independent of the displacements and orientations of
the two objects. The in-between model should also preserve the features common to
both input objects. For example, in morphing a cat to a rabbit, a leg as a prominent

feature should always remain as a leg.
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We propose four basic criteria a metamorphosis algorithm should satisfy. Let
Ay be the translation of object A by vector x. Let A%® be the rotation of object A
by angle 6 about the axis of rotation a. Let A ®; B be the in-between polyhedral
model of A and B at time . Let ¢4 p be the correspondence between A and B.
If the in-between model is computed under a specific correspondence ¢, then the

in-between model is denoted as A ®; B.

1. Identity preserving:
For any t € [0,1], A®; A = A. When the two input objects are identical, the

in-between object should always be the same as the input objects.

2. Translation invariant:
For any vectors X,y and ¢ € [0,1], Ax ®: By = (A ®; B), for some z. That is,
the morphing should be independent of the relative position of A and B. Note

that z = (1 — ¢)x + ty if the animation speed is uniform.

3. Rotation invariant:
For any axes of rotation, a, b, angles 8,8 € [0,27], and ¢ € [0, 1], A%2®,BPP =
(A ®: B)"* for some 74 and c¢. The morphing should be independent of the

relative orientation of A and B.

4. Feature preserving:
If there are features common to both input objects, the features should be

preserved during the metamorphosis.

The last criteria is informal as there is no general agreement on which part of an
object is a feature and how to tell whether a feature is preserved or not in a morphing.
But in some applications, this criterion is meaningful to most people. One example

is preserving the legs or the head of two different animals during morphing.

A metamorphosis algorithm is often described by its correspondence algorithm
and interpolation algorithm, so it is desirable to define also the following criteria for

them. We say a correspondence algorithm is
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1. identity preserving if ¢4, 4 = I, where I is the identity correspondence;
2. translation invariant if for any vectors X,y, ¢4, B, = ©4,8;

3. rotation invariant if for any axes of rotation a,b and 6, 3 € [0, 27], 0 6.0 pop =

$AB;

4. feature preserving if the features common to both input objects are matched;
and an interpolation algorithm is

1. identity preserving if for any ¢t € [0,1], A ® A = A, where I is the identity

correspondence;

2. translation invariant if for any vectors x,y, ¢ € [0,1], and correspondence ¢,

Ax ®{ By = (A ®{ B), for some z;

3. rotation invariant if for any axes of rotation a,b,0,8 € [0,27],t €

[0,1], and correspondence ¢, A%* @ B%P = (A ®{ B)"* for some 7 and c;

4. feature preserving if features common to both input objects, which are matched
under a feature preserving correspondence, are preserved during the metamor-
phosis.

It should be noted that a metamorphosis algorithm is identity preserving/translation

invariant/rotation invariant/ feature preserving if both its correspondence and inter-
polation algorithms are identity preserving/translation invariant/rotation invariant/

feature preserving.

3.3 General Ideas — Intrinsic Shape Parameters

No existing 3-D metamorphosis algorithm satisfies all the above criteria. In partic-

ular, none of them is rotation invariant and feature preserving.

In 2-D morphing, if we use the physically-based shape blending [40] to establish

the correspondence and use the intrinsic shape interpolation [41], the first three
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criteria will be satisfied. Moreover, it is shown in [41] that given a proper correspon-
dence, features of the objects are well preserved in the animation. In establishing
the correspondence, some parameters can be set by the user to adjust the relative
contributions by the stretching work done and the bending work done. The intrinsic
shape interpolation has demonstrated its effectiveness in feature preserving [40]. The
success of these algorithms can be explained by the fact that intrinsic parameters are
invariant under translation and rotation. Consequently, the use of intrinsic param-
eters becomes a natural choice in devising 3-D metamorphosis algorithms satisfying

the four criteria.

The first problem encountered in generalizing intrinsic parameters to 3-D is the
representation of the objects. We represent a polyhedral model as an oriented plane
graph [44], called the vertez adjacency graph (VAG). The vertex adjacency graph
is composed of the vertices and edges of the polyhedron [5]. The face adjacency
graph (FAG), which can be thought of as the dual of the vertex adjacency graph, is
used to represent the interrelations between faces. The nodes of the face adjacency
graph and vertex adjacency graph are interrelated by intrinsic parameters, such as
edge lengths, I, dihedral angles, [, and interior angles, § (See Fig. 3.1). We will
use the intrinsic parameters to interpolate the face adjacency graph and the vertex

adjacency graph.

The second problem of using intrinsic parameters is which intrinsic shape param-
eters are to be used. There are a lot of intrinsic parameters for polyhedral models,

such as edge lengths, interior angles, dihedral angles, outface angles [44], etc. In the

Figure 3.1: Examples of intrinsic parameters.
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forthcoming chapters, these representations and the parameters will be defined and

discussed for their application in metamorphosis.
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Chapter 4

Representations

This chapter presents the representations of the polyhedral models used in cor-
respondence and interpolation, which makes use of the intrinsic parameters. A

representation for correspondence is also defined.

4.1 Polyhedral Model Representation

A polyhedron can be represented as a planar graph. Since a planar graph can have
more than one embedding on the plane, we will restrict ourselves to the particular
embedding that represents the topology of the polyhedron. An embedded planar
graph is called a plane graph [19]. In order to distinguish a plane graph from its
mirror-image graph, we assign an orientation to the plane graph, as done in [46].

This results in an oriented plane graph.
Definition 4.1 An oriented plane graph is a plane graph in which each circuit

bounding a region is a cyclically ordered set of links that bound the region in a

counterclockwise order.
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Definition 4.2 The vertez adjacency graph (VAG) is an oriented plane graph that
is associated with a polyhedron. Each node of the VAG represents a vertex of the
polyhedron and there is a link between two nodes if the corresponding vertices are
linked by an edge of the polyhedron. Each region of VAG corresponds to a face of
the polyhedron. The order of the links around a region of VAG is the same as that
of the corresponding edges around the corresponding face in the polyhedron. FEach

node contains the vertexr coordinates.

The VAG represents a polyhedron uniquely, and we will use the VAG as the

primary representation of a polyhedral model.

Definition 4.3 The face adjacency graph (FAG) is an oriented plane graph that is
associated with a polyhedron. A node contains the outward unit normal vector of the
corresponding face. The link connecting two nodes contains a flag of value +(pos-
itive), —(negative), or =(coplanar), indicating that the corresponding faces form a

convez, concave dihedral angle, or that the two faces are coplanar, respectively.

For simplicity, we assume that the flag in FAG only takes the value + or —.
Each region in the FAG corresponds to a vertex of the polyhedron. Note that an
FAG cannot define a polyhedron uniquely. As we will see later, additional geometric
information is needed to make the FAG a complete representation of a polyhedron.
It should be clear that as plane graphs, FAG and VAG are dual to each other, and
the FAG of a polyhedron can be constructed if the VAG of the polyhedron is given.
Since each node of VAG corresponds to a vertex of the polyhedron, we will use the
terms “node of VAG” and “vertex” interchangeably. Similarly, we will use the terms

“node of FAG” and “face” interchangeably.

Definition 4.4 Two VAGSs or two FAGs are topologically equivalent if the vertices,
edges, and faces of the underlying graphs can be put in a one-to-one correspondence
that keeps the ordering of the bounding edges surrounding every pair of corresponding
TEJIONS.
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We now introduce two FAG-based representations for polyhedral models.

Definition 4.5 When the nodes of the FAG contain the areas of the corresponding

facets, the FAG will be called a connected Ertended Gaussian Image, or a connected

EGI for short.

The connected EGI is an extension of the Extended Gaussian Image (EGI) [23],
which is an object representation in which an object is represented as a set of
independent weighted points on the Gaussian sphere with the weight being the
area of the facet. Any convex polyhedron can be uniquely represented by an EGI

representation [23, 34]. We also have a similar property for the connected EGI.

Theorem 4.1 Unigqueness Theorem for the connected EGI

For any given two polyhedra, no matter conver or not, with convex faces only, if
they have the same connected EGI then they are the same polyhedron up to transla-

tion.

The proof is similar to that for the theorem of Alexandrov [34]. Before giving
the proof of Theorem 4.1, we state the following lemma whose proof can be found

in [34].

Lemma 4.2 Given two conver polygons X and Y, if they cannot be strictly embedded
one in the other by a translation, we assign +/- sign to each of edge of X and Y,
such that if the edge of X is longer than the corresponding parallel edge of Y with
the same direction of outward normal ' (if there is no corresponding edge, we use
the vertez of Y such that the edge of Y is supporting to this vertez and the outward
normal vector of X is pointing outside from the vertez) then, we mark a + sign at

the edge of X. If it is shorter, we mark a — sign there. If they are equal, we do not

1An outward normal of an edge of a 2-D polygon is a vector perpendicular to the edge and

pointing towards the exterior of the polygon.
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mark it. Then, on a circuit of polygon X or Y, we have > 4 transitions of + to -,

or — to + sign.

Proof of Theorem 4.1

Let A and B be two polyhedra such that they are topologically equivalent and
there is a one-to-one correspondence between their faces. Suppose they have convex
faces only. Corresponding faces have the same outwards normal and area. Since
they have the same adjacency information, we have the one-to-one correspondence

between edges.

Suppose that there is some pairs of their edges that are not equal in length. We
mark each of the edge of polyhedron A as explained in the lemma. Since each edge
will correspond only to a single edge or vertex, edges will be marked consistently.

Then, there are two cases for the corresponding faces to have the same area:

Case 1: they are congruent; then all their edges are unmarked.
Case 2: they cannot be strictly embedded into each other by a transla-
tion; then around a circuit of the face of A, there are more than or equal

to 4 transitions.

Let H be the planar graph such that it is obtained by deleting all faces with no
mark from the dual graph of the polyhedron surface. Each vertex in H has more

than or equal to 4 transitions of sign changes.

Let F be the number of faces of H. Let V be the number of vertices of H. Let
E be the number of edges of H. Let M be the sum of transitions of sign changes
over all faces in H. So, M is also the sum of transitions of sign changes over all
vertices in H. Then, M > 4V. Let a; be the number of i-sided regions. Then,
2E = $;53(1 * a;) (where i > 3 since all the faces in the original graph before edge
and vertex deletion are at least 3-sided, after deletion, they are still at least 3-sided).

For a face of sides a;, the maximum number of transitions of sign changes is less
than or equal to 2* [¢/2].
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So,
Mo< Sk lif2) «a)

>3

4V < (2% [i/2] * a))

>3

and
V+F = E+2
V = E—F+2
= /2% a) - Y(a)+2
= S((i/2 1) % a;) +2
So,

/2% i/2) xa;) > Y ((1/2—1)%a)+2
DAli/2) xa)) > D ((E—-2) %) +4
—4 > Y(G-2-i/2]) xa)

= 2&5 + 26‘&6 + 4(17 +4a8

Vv

0

So, we get a contradiction. Therefore, all the corresponding edge lengths of A

and B are equal, and thus A is equal to B up to translation. Q.E.D.

Definition 4.6 If each node of the FAG contains the perpendicular distance from
the corresponding facet to its center of gravity, the FAG is called a connected Fe-
tended Distance Image, or a connected EDI for short.
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Theorem 4.3 Unigueness Theorem for the connected EDI

For any given two polyhedra, if they have the same connected EDI, then they are

the same polyhedron up to translation.
Proof of Theorem 4.3

Let A and B be two polyhedra such that they are topologically equivalent and
there is a one-to-one correspondence between their faces. First consider the case
that the centers of gravity of A and B are at the origin. If their corresponding
perpendicular distances are the same, each pair of the corresponding faces have the
same equation. And since they are topologically equivalent, all corresponding edges

and vertices are the same. Thus, A and B are the same.

When their centers of gravity are not coincident at the origin, they are congruent

up to translation. Q).E.D.

4.2 General Correspondence

In general, for two input polyhedra A and B, their vertex adjacency graphs are not
topologically equivalent. Then a general correspondence has to be used, in which
one vertex of A may correspond to many vertices, edges or faces of B, and vice
versa. In the following, the representation of a valid general correspondence for
polyhedral models is formulated. Two concepts are needed to define a valid general

correspondence: the vertez correspondence mapping and the super-graph.

4.2.1 Vertex Correspondence Mapping

Let M and A be polyhedral models. Let VAGM and VAG* be the vertex adjacency
graphs of M and A. Let M.V and A.V be the set of nodes of VAGM and VAG4,
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respectively. A vertex correspondence mapping hv? : MV — A.V is defined as
hv#(z) = y if the vertex z of VAGM corresponds to the vertex y of VAGA. We use
hvA(VAGM) to denote the graph with the set of nodes being the range of hv* and
the set of links being all the links mapped from the links of VAGM.

Let M.E and A.E be the set of links of VAGM and VAGA, respectively. Let
M.F and A.F be the set of faces of VAGM and VAG#, respectively. We call
hvt : M.V — A.V a valid vertex correspondence mapping if it satisfies the following

conditions:

1. hv? is onto.

2. If (m1,m2) € M.E, then either (hv*(m1), hvi(my)) € A.E or hvi(my) =
th(mQ) € AV.

3. Forany e € A.E, there exists (m1,ms) € M.E such that (hv*(my), hv?(my)) =

€.

4. For any face r € M.F, r is mapped to either a face with the same orientation,

an edge, or a vertex of A.

4.2.2 Super-Graph

If hv* satisfies conditions 1, 2, and 3, then hv4(VAGM) is isomorphic to VAG“.
In this case, the only difference between hv4(VAGM) and VAG4, as oriented plane
graphs, may be the embeddings and orientation. If hv# further satisfies condition
4, each face of M is mapped to either a face, an edge or a vertex of A. Then
ho4(V AGM) is topologically equivalent to VAG#. In this case, we call VAGM a
super-graph of VAGA.

A valid general correspondence between A and B is defined by (1) a super-graph
VAGM of VAG* and VAG?®; and (2) two valid vertex correspondence mappings
hvt : M.V — A.V and hv®: M.V — B.V.
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Chapter 5

Interpolation of Face Adjacency

Graphs

5.1 Notation

Let FAG#, FAGE, and FAGM® be the face adjacency graphs of A, B, and M(t),
respectively, and let VAGA, VAGE, and VAGM® be their respective vertex adja-

cency graphs.

We use P to refer to a genus zero polyhedron, and let its number of faces and
vertices be n and m, respectively. The face adjacency graph and vertex adjacency
graph of P will be denoted by FAG and V AG, respectively. By definition, n and m
are also the the number of the regions and nodes of V AG, respectively. Throughout
this thesis, a notation with the name of a polyhedron as superscript, such as FAG4,
FAGE, and FAGM® will refer to the elements for that polyhedron. When it is

without superscript, the notation is used for a general genus zero polyhedron.

The above notation will be used from Chapter 5 onwards.
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5.2 Interpolation of Face Adjacency Graphs

In this section, the one-to-one correspondence between VAG4 and VAGE is first
assumed for simplicity; the interpolation under a general correspondence will be
discussed in Section 6.5. Under a one-to-one correspondence, VAG4, VAGE, and
VAGM® are assumed to be topologically equivalent, so are FAG#, FAG®, and
FAGM®. In this case, n® = nB = nM® and m4 = mB = mMO_ For simplicity, we

denote @ = n4 = nB = nM® and W1 = mA = mB = MM®).

The interpolation of FAGA and FAGP produces FAGM® . Let fiM(t) be the
1" face of the in-between polyhedral model M(%), and NM® be the outward unit

normal of f,-M(t). When interpolating FAG* and F AGE, our goal is to compute the

® at time t,for e =0,1,...,m — 1, We will start with two initial

faces, fo and fi, and then use the intrinsic relation between faces to compute NZ-M ®

M
normal vector N,

for 2 =2,3,...,n — 1, by propagation.

5.2.1 Computing the First Two Normals

To proceed, we introduce the outface normal of an edge. Let f; and f, be two
adjacent faces sharing an edge in a polyhedron. Let T}, be the unit vector parallel
to the edge and oriented counterclockwise with respect to the face f;. The outface
normal e, to the edge with respect to f; is defined by the unit vector Tj, x Nj.
That is, ey, is parallel to face f, and points towards the exterior of f,. Fig. 5.1
and 5.2 illustrate the definition in two different situations and their meanings are
also illustrated on the Gaussian sphere 23], denoted S. The Gaussian sphere can be
thought of as a sphere on which every point corresponds to a unit direction vector.
Thus, all the unit normal vectors can be represented by points on the Gaussian

sphere. Let I, , be the dihedral angle between the faces fy and f,.

The normal vector Név‘f ® is interpolated using the shortest arc on S connecting

N§ and NZ. N ® can be computed if the dihedral angle lé‘{l(t) and the outface
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Figure 5.2: Definition of the outface normal e; o of a reflexive edge.
normal eé\:fl(t)
and 661,1 are orthogonal, F4 = {Ng, eél, N x eél} is an orthogonal frame. Similarly,

FB = {NE,eB,,Nf x ed,} is also an orthogonal frame. Let K(t), t € [0,1], be the

are known. The outface normal eé‘ﬁ(“ is computed as follows. Since Ng

shortest rotational motion about a fixed axis that rotates F4 into F2,1.e., K(0) =1
and K(1)F4 = FB. Then set egy? = K(t)ef,. See Fig. 5.3. The dihedral angle PR
is computed as (1 — t)lé‘f1 + tlgl. Thus, the normal NlM ) js computed by rotating
Né” ) about the axis Néw @) x egﬁ(t) for an angle l{,‘ﬁ‘"‘). To make the computation of
NlM ) stable, we choose the first two faces féw ® and flM ® such that min{la“’l,lgfl}

is maximized.
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xe
¢ o1

Figure 5.3: Rotation of the first two normals

5.2.2 Propagation

Suppose fe, fs, and f. are three consecutive nodes around a region of the FAG. Let
f.5. be the angle of rotation needed to rotate e;. to ey, about the rotation axis
N. It is called the outface angle from e, into ey, about Nj. When there is no
ambiguity about the meaning of 8.4, we would simply write it as 6. Let Ry(a)
denote the rotation about axis N by an angle a. Then, as €. is determined by N,
and Ny, the vectors N, N;, and N, are related by the following relations (see Fig.
5.4 and 5.5):

esa = R, (0)es,c (5.1)
Na = RNbXeb,a(lb,a)Nb (52)

Since the in-between polyhedron M(t) should also satisfy these two relations, the

equations:
e = Ryguo (0M)er (5.3)
NMO = R w0 (n )Ny @) (5.4)
b b,a

will be used to compute N2 when Néw ® and NM® are known. The terms gM ()

and I?:I ) used in Eq. (5.3) and (5.4) are computed by interpolation

PM® = (1 — 1)0* + 167 (5.5)
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Figure 5.5: Relation of N, Ny, and N, when M) and flfw(t) share a reflexive edge.

MO = (1)1, + 1B, (5.6)

»a

where 04, 68, I, and 1P, are directly computed from F AG4 and FAGP. Thus,
eﬁ(t) is determined by Eq. (5.3) and NM® is then determined by Eq. (5.4). In
other words, given FAG# and FAG®?, NM® can be determined if NM® and NM©O)
are known. Consequently, NQ-M(“1 i =23,...,m— 1, can be computed once Név[(t)
and N} () are known. There are numerous choices of the order of computing the

NbM ) and breadth-first search is used in our implementation.
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Figure 5.6: Interpolation of the tetrahedra in Fig. 2.3

5.3 Interpolation of Connected EDI

In this and the next subsections, we will consider applying the interpolation schemes
of FAG above to the connected EDI and the connected EGI. Let p; be the perpen-
dicular distance from the polyhedron’s center of gravity to the face f;. The distance

component of the connected EDI of A and B can be interpolated independently by

pi® = (1= t)pd + P (5.7)

5.3.1 Results of Using Connected EDI

Two simple examples are shown in Fig. 5.6 and 5.7 to illustrate the interpolation of
the connected EDI. Fig. 5.6 shows that the interpolation of face adjacency graphs
eliminates the total inversion of interior surfaces that results from the linear vertex
interpolation. In Fig. 5.7, although the general shape is changing, there are defects
at the vertices of the in-between object: more than three faces do not intersect at a

common vertex when they are supposed to.

When interpolating the connected EDI, the interpolated connected EDI may not
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Before interpolating the vertex adjacency graphs, we need to interpolate the face

adjacency graphs as done in Chapter 5. We will not repeat the details here.

6.2 Interpolation of Vertex Adjacency Graphs

This section discusses the interpolation of VAGA and VAGE. Let V;-M(t) be the 5t
vertex of M(t), and let vfm) be the vertex coordinates of V}M(t). Our goal is to
compute the vertex coordinates véw(t) for j =0,1,...,m — 1. We first compute two
starting vertices which are determined by the two starting faces in interpolation of
FAG# and FAGPE. Then using the intrinsic relation between vertices, we compute

vj-mt) by propagation for j = 2,3,..., 7@ — 1.

6.2.1 Computing the First Two Vertices

We denote the two vertices of the edge shared by the faces f; and f; by V and
Vi, oriented such that Vi follows V4 counterclockwise around fo. We will compute
’Uéw © and ’U{W(t) first. Let I,; be the length of the edge T;75. First, set véw ® =
(1 — t)vd + tvB. Then v}’ ®) is computed such that the direction of v}® — p}® g

parallel to N27® x eé‘ﬂ(t) and ]Iviw(t) - véw(t)ﬂ = Z.f,‘ﬂ(t) =(1- t)i& + tigfl.

6.2.2 Propagation

Suppose V,, V;, and V, are three consecutive vertices of a face f;. Let &, be the unit
edge tangent vector parallel to the direction of v, — vy and let éc,b,a be the interior
angle LV, V,V,. When V,, V;, and V, take the counterclockwise order around f;, éc,b,a
is negative; otherwise, it is positive. When there is no ambiguity about the defining

vertices for the angle, we will simply write it as g.

We need to find a relation that involves intrinsic parameters only and links v,,
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vs, and v,. See Fig. 6.1.

Vo = V3 + ib,aRNi(é)éb,c (61)
This relation gives the equation
oM = ,U;V-’(t) + zﬁ(t)

Ryt (%) ") (6.2)

to compute vM® when véw(t) and vM® are known. The terms §® and ji\i(i) used

Figure 6.1: Relation of v, vs, and v..
in Eq. (6.2) are computed by the interpolation
MO = (1 - 1)64 + 68 (6.3)
0 = (1 - )i, +tIE, (6.4)
Note that in Eq. (6.2), the N; is unknown if we only interpolate the vertex adjacency

graphs. That is why we need to introduce a two-phase interpolation algorithm.

M(2)

Thus, when vg M()

and vy ' are known, vj-w(t), 3 =2,3,...,Mm—1 can be deter-
mined by propagation. Again, breadth-first search is used in our implementation

for propagation.
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6.3 Stability of Algorithm

The interpolation of FAG or VAG is a one-pass algorithm. The result of the in-
terpolation depends on the initia] values and the order of computation. A small
perturbation of initial values can introduce a big difference in later stages of compu-
tation. In Eq. (6.2), when Hvé‘l(t)—-vl],\l(”]] < ié\ﬁ(t), a perturbation §vM® to v can
make a big change to v, The same is true of Eq. (5.4). Thus, if the initial values
are not set properly, the in-between object can be highly distorted. We circumvent

this problem by using a heuristic to make the algorithm numerically more stable.

In the intermediate stage of interpolating VAG# and VAGE, suppose we are to
M(t) Mt

a a

VM® and VM®, such that the coordinates of VM@ and VM® are already computed,
and VMO yMO ang VM) are consecutive around a face of VAGM®. Let there

be d, pairs of such vertices for VaM(t), denoted by Vb],:/l(t) and VCJI‘C’I(”, k=0,1,.., d,—1.

compute the vector v, To compute vM®), we first have to find a pair of vertices,

Fig. 6.2 illustrates the situation. Each of these Ja pairs is used to compute a vi‘f(t)

Figure 6.2: Computing vM(®).

with a weight

M) Hv{,\f(t) _ Ug{(t)ll

~ _ Ubper (65)
War = 213y = 1. M M) "
S N |
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The final vM® will be computed as

da~1 Mt
k=0 wakvak()
do~1 ~
ka=0 Wy,

The choice of the weight by Eq. (6.5) is made so that a pair vé‘f(t), v,f:f(t) with

shorter length ||v£f ) _ vé‘f (t)H contributes less to the final ¥M®),

The same principle applies to the interpolation of FAG* and FAGE. That is,
NM) is assigned the direction of 3w, NM ) with the weight w,, given by:

li‘/f ()
70 (6.6)

bk 1k

wak =

[

Experiments show that the above remedy greatly alleviates the numerical instability

of ¥M®) and NM® and leads to a more robust algorithm.

6.4 Pseudo Code

The algorithms for interpolating the face adjacency graphs and the vertex adjacency

graphs are given below in pseudo code:

Algorithm FAGInterpolation(VAG#, VAG?, t)
Input: Vertex Adjacency Graphs VAG# and VAG® of
polyhedra A and B.
t is the time in interval [0,1].
Output: Face Adjacency Graph FAGM® of polyhedron M(t).
1. construct FAGA from VAG4;
construct FAGP from VAGE;
2. choose two initial adjacent nodes of FAGM® and
assign them two unit normal vectors; //section 5.2

3. while there is still an uncomputed node of FAGM()
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do
3.1 select next node fi”(t) by breadth-first search
3.2 for all pairs (fM0, ,f:[(t)) such that

NM® ang fo(t) have been computed and

c]\:(t)’ é’\kl(t) and fM® are

consecutive around a region of FAGM()
do

compute NM®) vy Eq. (5.4);

compute w,, by Eq. (6.6);

we Ni‘/f(t)
3.3 compuve NI = ptenlury
k\ag i tag

4. return FAGM®),

Algorithm VAGInterpolation(VAG4, VAGE, FAGM®), t)
Input: Vertex Adjacency Graphs VAG# and VAGEP of
polyhedra A and B.
Face Adjacency Graph FAGM® of M(t).
t is the time in interval [0,1].
Output: Vertex Adjacency Graph VAGM(®) of the in-between object.
1. assign initial vertex coordinates to VM and VMY //section 6.2
2. while there is still an uncomputed node of VAGM®
do
3.1 select next vertex VaM(t) by breadth-first search;
3.2 for all pairs (VM®, VM®) such that
vM®) and v{,\:(t) have been computed and
V;le(t), VbM(t), and VM® are

k
consecutive around a region of VAGM®

do
compute vé\f(t) by Eq. (6.2);
compute W, by Eq. (6.5);
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M(t)

3.3 compute vM) = Z%qﬂ’(—"&’)g),
K\ Wap

4. return VAGM®),

6.5 Interpolation under General Correspondence

This section presents how to interpolate VAGA and VAG? under a general cor-
respondence. The correspondence is assumed to be valid throughout the discus-
sion. We first replace VAG# and VAGP by two vertex adjacency graphs which are
topologically equivalent to VAGM®, so that the method used for the case of the
one-to-one correspondence can be directly applied. However, this may cause degen-
eracy problems in interpolating the intrinsic parameters and using the relations Eq.
(5.3), (5.4), (5.5), (6.2), and (6.3). We will resolve it by using the intrinsic shape

information in one object to approximate the degenerate part of another object.

6.5.1 Applying the Method for One-to-One Correspondence

VAG# is replaced by a vertex adjacency graph, denoted VAGM4, which is topo-
logically equivalent to VAGM®), The node values are determined as follows: if
rA(VM) = VA, vM4 = v, From VAGM4, we construct FAGM4. We renumber
the vertices of VAGM4 and faces of FAG™4 in such a way that VjMA of VAGMa
corresponds to VjM(t) of VAGM®, and fM4 of FAGM4 corresponds to ™ ® of
FAGM®, vV AGE is replaced by VAGM® that is similarly defined. FAG™# is con-

structed similarly.

Unfortunately, the edges and faces of VAGM4, VAGMe, FAGM4, and FAGMs
may be degenerate. If a face f,-MA is mapped to an edge or a vertex of A, the
normal vector NiM” is not well defined; consequently, the related outface angles and
outface normals are not defined. If an edge (VMa, VM4) of VAGM4 is mapped

to a vertex of VAG#, the edge tangent ég"[g‘ is not defined, neither are the related
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interior angles. The same problem occurs in VAGM® and FAGMs. Thus, Eq.
(5.3), (5.4), and (5.5) cannot be used for the interpolation of FAGM4 and FAGMs,
neither can Eq. (6.2) and (6.3) for the interpolation of VAGM4 and VAGM=. To
overcome the problem, we need to approximate the values of the undefined outward
normals, outface normals, outface angles, edge tangents, and interior angles for
degenerate elements of VAGM4 or VAGM=. The approximation is made by adapting
the intrinsic shape information in one object to the corresponding degenerate part
of another object. We first compute the undefined outward normals and then by
definition, the undefined outface normals, outface angles, edge tangents, and interior

angles will follow.

6.5.2 Adapting Intrinsic Shape Information

We adapt the intrinsic shape information from the other object to approximate the
undefined outward normals. The method of approximating the undefined outward
normals NM4 and NM is similar to the idea of interpolating FAG4 and FAG® in
Section 5.2. We assume that there is at least one pair of well-defined corresponding
outface normals ef’lj and eé‘ff to serve as the start point of the approximation. This

condition is satisfied in most practical situations.

Suppose fM4 is mapped to a vertex or an edge of VAG#, thus NM4 is not
defined. We assume that f5 is defined, for otherwise, the super-graph can always
be simplified so that the assumption holds. To approximate N™4  we first have to
find two pairs of corresponding faces, fM4 and fM#  and flfv" 4 and f,fwB, with well-
defined outward normals such that fM4, fM4 and fMa and fMs, fMB and fMs
are consecutive around a pair of corresponding regions in FAGM4 and FAGMz,

respectively. Let the total number of such pairs be x,. Denote these pairs of faces

Mg

by fb]:fA and f,f:’*, k=0,1,...,k — 1. Here we simply use 64 to denote 6,4 , .

To simulate the nondegenerate case, the normal Ni‘;’f‘ could be computed by

Ma __ May ,Ma
Coxar RN;:A (9 )ebkyck
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NYA =Ry aa, (M4 YN}

bk bk aj
However, as the outface angle ™4 in the first equation is not defined, we replace

g™+ by its counterpart in VAGM5, ie., set §M4a = Mz, Similarly, we set (M

bk Qg =

lbk i~ As a result, ebk s = R MA(HMB)GQI{% and NMA =R NMa s, MA (lg‘fﬁk)’\/’bk ,
by bk

E=0,1,.. ~ 1. The outward normal NM4 is then approx1mated as the unit

vector of 22“51 wakN 4. Now, the outface normals and edge tangents related to

M4 can be determined from N4 and the related outface angles and interior angles
can also easily be determined. The undefined quantities in VAGM2 and FAGM=

are approximated similarly.

6.6 Pseudo Code of Two-Phase Intrinsic Interpo-
lation Algorithm

Algorithm IntrinsicInterpolation(VAG4, VAGE, VAGM®, t)
Input: Vertex Adjacency Graphs VAGA and VAGE of

polyhedra A and B.

VAGM®) is the given in-between Vertex Adjacency Graph

whose node values are yet to be computed.

t is the time in interval [0,1]
Output: Vertex Adjacency Graph VAGM® of the in-between object
1. Replace VAG“ and VAG? by VAGM4 and VAGME, respectively;
2. Construct FAGM4 and FAGM? from VAG# and VAGE, respectively;
3. Approximate the undefined normals NM4, NMs // section 6.5
4. Approximate the undefined outface normals, edge tangents,

outface angles and interior angles // section 6.5

Compute FAGM() at time t by FAGInterpolation(VAGMs, VAGM=, %)

[¢)]

6. Compute VAGM® at time t by
VAGInterpolation(VAGMA, VAGME, FAGM®) 1)
7. return VAGM®;
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6.7 Results and Discussion

In this section, some properties of the two-phase intrinsic interpolation algorithm

and some experimental results are discussed.

6.7.1 Properties of Two-Phase Intrinsic Interpolation Algo-

rithm

Property 6.1 If A and B are congruent polyhedral models and the given corre-
spondence is the identity correspondence, i.e., all vertices, edges, and faces of A

correspond to their counterparts of B, then, M(t) = A= B for all t € [0,1].

The proof is trivial and therefore omitted. By this property, the two-phase intrinsic
interpolation algorithm is identity preserving when the given correspondence is the

identity correspondence.

As we can see, all operations — approximating normals, computing initial normals
and vertex coordinates, stabilized propagation of computing normals and vertex co-
ordinates — involve only the interpolation of intrinsic parameters, which are invariant

under rotation and translation. So, we have the following properties:
Property 6.2 The intrinsic interpolation s rotation invariant.
Property 6.3 The intrinsic interpolation is translation invariant

Lemma 6.1 To produce an in-between model by the intrinsic interpolation requires
computing O(E) normals and O(E) vertices, where E is the number of edges of the
super-graph VAGM®,

Proof: In the interpolation of the FAG*4 and FAGP®, computing a normal in
F AGM® by propagation requires a certain number of applications of the Eq. (5.3)
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and (5.4). Each application of Eq. (5.3) and (5.4) produces a normal. It is noted
that each application of Eq. (5.3) and (5.4) involves an outface angle, and each
outface angle is involved at most once in the whole algorithm. So, we have:

total number of computed normals

< total number of outface angles of FAGM®)

= 2 X total number of edges of FAGM®

= 2 X total number of edges of VAGM(®)

= 2F where E is the total number of edges of VAGM®),

Similarly, in the interpolation of the VAG4 and V AGE, we have:
total number of computed vertices
< total number of interior angles of VAGM®)
= 2 X total number of edges of VAGM®
= 2F

Since we need to compute two initial normals and two initial vertices, the intrinsic

algorithm computes O(E) normals and O(E) vertices to produce an in-between

model. Q.E.D.

Lemma 6.2 We say a super-graph is of minimal number of edges if there exists no
edge (mq,my) of the graph such that hv(my) = hvA(ms) and hv®(m;) = hvB(m,),
where hv? and hv? are the vertex correspondence mappings of the super-graph.
Then, for a super-graph of minimal number of edges, E < E4 + EB, where EA
and EB are the number of edges of VAGA and V AGP.

Proof: For a super-graph of minimal number of edges, each edge is mapped to (1)
an edge in VAG# and an edge in VAGE; (2) an edge in VAG# and a vertex in
VAG?E; or (3) a vertex in VAG# and an edge in VAGP. Therefore, E < E4 + EP
is directly followed. Q.E.D.

By Lemma 6.1 and 6.2, and that computing each normal by Eq. (5.3) and (5.4)

and each vertice by Eq. (6.2) take constant time, we have the following property.
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Property 6.4 The intrinsic algorithm computes an in-between model in O(E4 +
EB) time for a super-graph of minimal number of edges, where E4 and EB are the
number of edges of VAG4 and VAGB.

As a comparison, we recall that an in-between model is computed in O(V') time,

where V' = max(n4,n®), by the linear or curved vertex path.

6.7.2 Experimental Results

The algorithm has been implemented and tested on SGI Indigo/XZ graphics work-
stations with CPU R4000. Experiments show that the algorithm works well for
many cases where the two morphed objects have similar features, and if the corre-
spondence is properly specified, the features are preserved during morphing. Fig. 1.1
is an example of showing different ways of morphing between two objects, in which
the only difference is the input correspondence. Fig. 6.3 shows the interpolation of
two tetrahedra that are used in Fig. 2.4. The objects are placed along a curved path
of motion for better illustration. Notice that the in-between tetrahedron rotates and
deforms at the same time, thus avoiding the flipping inside out problem that occurs

when the objects are morphed by using the linear vertex path.

Fig. 6.4 shows the interpolation of two human figures facing us. The figure is
rotating his body, while at the same time, turning his right arm. Each in-between
figure needs about 0.2 seconds to compute. Fig. 6.5 shows the interpolation of
the same figure as in Fig. 6.4 but using the linear vertex path. Notice that the
in-between human figures are unnaturally thin and the right arm is severely dis-
torted. The most severe distortion occurs at ¢ = 0.6 when the right arm disappears

completely. Fig. 6.7 shows the comparison of the animation in Fig. 6.4 and 6.5 at

t = 0.6.

Fig. 6.6 shows another example of morphing. Two objects with opposite “horns”

are placed at the rightmost and leftmost positions. The lower sequence, which is

39



Figure 6.4: Interpolation between two human figures.

arranged in a curved path, shows the morphing process using the two-phase intrinsic
interpolation, while the upper sequence, which is arranged in a linear path, shows
the morphing process using the linear vertex path. The two-phase intrinsic interpo-
lation algorithm avoids the inversion of interior surfaces in the in-between models

by rotating and distorting the models at the same time.

As suggested in [27], one is often tempted to think that properly tuning the
orientation of one object and simply using the linear vertex path or Minkowski sum
can produce a desired in-between model. However, the morphing like that in Fig.

6.4 may involve a lot of prominent features, e.g., the trunk and arms, needed to
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Figure 6.5: Interpolation between two human figures using linear vertex path.

turn in different directions at the same time. In this case, the approach of tuning
the relative orientation of the input objects can never produce a desired in-between
object. Thus, that our intrinsic interpolation algorithm is able to turn the arm and

the trunk in two different directions at the same time is a distinct advantage.

Fig. 6.8 shows the morphing of two solids at the top and bottom under a general
correspondence with the linear interpolation shown on the left and the intrinsic
interpolation on the right. The approximated normal is shown as the white arrow.
The flipping inside out in the linear vertex paths at t = 0.2 and ¢t = 0.4 is avoided
by the intrinsic interpolation. Fig. 6.9 and 6.10 with similar layout to Fig. 6.8
show how the degenerated normal is approximated at a convex edge and a concave
edge, respectively. Shrinkage and flip-around are avoided in the interpolation and

the computation is done nearly instantaneously.
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Figure 6.6: Morphing between two general polyhedral models

Figure 6.7: Comparison of the in-between models by our method and the linear

vertex path.
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Figure 6.8: Morphing under a general correspondence.

Figure 6.9: Approximating normal at a convex edge.
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Figure 6.10: Approximating normal at a concave edge.
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Chapter 7

Establishment of Correspondence

This chapter discusses how to apply intrinsic parameters to solving the correspon-

dence problem by deriving shape metrics that are based on intrinsic parameters.

7.1 Shape Metric

7.1.1 Deforming Polyhedral Models

For simplicity, we first assume that A and B are topologically equivalent polyhedra
and their faces, edges, and vertices are numbered according to the one-to-one corre-
spondence between A and B. When deforming a polyhedral model, we ¢ould deform
its faces by size, shape, position, and orientation. The four cases above do not ex-
clude each other and often happen simultaneously. Fig. 7.1 shows the deformation
of a face by size. Fig. 7.2 shows that the shape of a face is deformed. In Fig. 7.3,
the relative orientations of two adjacent faces are changed. In Fig. 7.4, we slide one
face by a translation. We can define work required to make the transformations in

the four cases above. Deforming face fi* of area w to face fE of area w? requires
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Figure 7.1: A face changes in size.

the work
W,(1) = kw]wf — wf] (7.1)

where w and w? are areas of the i** faces of A and B , respectively, and &, represents
the stiffness to stretch an area. As in the physically-based shape blending for 2-D
polygons, the work to transform the shapes of the faces can be defined in terms of
the bending work and the stretching work. Let 6., be the interior angle [V, V..
The work to bend interior angle éﬁb,a of value 84(3,5) to éfb,a of value 05(z,7) is

defined as
WC([Q b, a]) = kblééb,a - éfb,a}

where k; is a user-defined constant representing the stiffness to bending. The work

to stretch the 1% edge from length 4 to IB is defined as
Ws(i) = k| — 2| (7.2)

where k, is a user-defined constant representing the stiffness to stretch an edge, and
[# and IP are the lengths of the i** edges of A and B respectively. Similarly, bending
adjacent faces f;* and fi* forming dihedral angle I, to adjacent faces f2 and fP

forming dihedral angle l£ » requires the work
Wp(la,b]) = kdllf,b - lf,b[ (7.3)
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Figure 7.2: A face changes in shape.

for some constant k; which controls the stiffness to fold or unfold two adjacent faces.
Sliding one face involves a change in the perpendicular distance from the center of
gravity of the polyhedral model to the sliding face. The deformation work done
for transforming face f{ of perpendicular distance pf to face f£ of perpendicular

distance u2 to the center of gravity is defined by
We(i) = koluf — 7| (7-4)

for some constant k, which is related to the resistance to inflate or deflate the object

by changing the relative position of a face.

7.1.2 Metric Based on Connected EGI
(a) Definition

We develop a shape metric based on the connected EGI for polyhedral models. Let
Wici(A, B) be the shape metric between A and B under correspondence ¢. The
connected EGI is composed of the face adjacency graph, which contains the unit
outward face normals of the polyhedron, and the areas of the faces. For simplicity,

we define We([a,b,¢]) = 0 when v#, v}, and v# do not proceed around a face of A
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t=0 t=1

Figure 7.3: Change of relative orientations of two adjacent faces.

counterclockwise and neither do v2, vZ, and vZ, and Wp([i, 5], [¢,5]) = 0 when f#
and f]A, and fP and fJB are not adjacent. Then W ,(A, B) is defined by

n—1n-17-1 A—-1n-1
a=0 b=0 c=0 =0 j=1t

The shape metric Wiz (A, B) above is defined only for two topologically equiva-
lent objects. Topologically equivalent to VAGM (), the two vertex adjacency graphs
VAGMA and VAGME that are defined by ¢, A, and B are used to replace VAG#
and VAGE. We then approximate the undefined interior angles, outward face nor-
mals, dihedral angles, outface normals, edge tangents, and outface angles by the
same method of interpolating polyhedral models under general correspondence in

Section 6.5. In this case, we define
Wier(4, B) = Wi (M, MP) (7.5)

where M4 and MP are the polyhedral models represented by VAGM4 and VAGM>=

respectively and ¢’ is the one-to-one correspondence between VAGM4 and VAGMz,

The parameters k,, ks, and kq are user-controllable and are used to adjust the

relative contributions of the different types of work done.
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Figure 7.4: Change of relative positions of a face.

(b) Properties

Property 7.1 Forany8, 8 € [0,27], and vectors a,b, WE5 (A%®, B*P) = Wi, (A, B)

Property 7.2 For any wvectors X,y, Wiqi(Ax, By) = Wiei(A, B)

Property 7.3 When k,, ky, and kg are not equal to zero, and A and B have convex
faces only, WSz (A, B) = 0 if and only if A and B are congruent.

Proof: When A and B are congruent, Wi 5;(A, B) is obviously equal to zero.
If Wz (A, B) =0, and k., ks, and kg are not equal to zero, then
WE(A,B) = 0
W¢(A,B) = 0, and
WH(A,B) = 0

W?(A,B) = 0 means that all the corresponding faces have the same area;

W5(A, B) = 0 means that all the corresponding dihedral angles are the same; and
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WE(A, B) = 0 means that all the corresponding interior angles are the same. Sup-
pose that the connected EGI of A cannot coincide with that of B by applying any
rotation transformation to A and B. For simplicity, we assume that VAG# and
VAG® are topologically equivalent and all their boundary elements, such as faces
and edges, are named in one-to-one corresponding fashion. We align the arc Ng, NA
with the arc NP, NP such that they coincide on the Gaussian sphere. Suppose a
connected subgraph of VAG# coincides with a corresponding connected subgraph
of VAG® of s nodes, s < 7. Let f4, f#, and f4 be three consecutive nodes around
a region of the FAG* such that f;! and f belong to the subgraph while f# does
not. fB, fB, and fB are similarly defined. Then the relation among N2, N#, and

N, and that among NB, NZ, and NP are described by Eq. (5.2) and Eq. (5.2) 1:

[+

b = R, (0cpa)es,c (7.6)

Na = RNbXeb,a(lb,a)Nb (77)

Owing to the hypothesis that the two subgraphs coincide on the Guassian sphere,
ef, = ef,, Nff = NP, and 024, . = 62, .. Thus ef, = ef,. And since i, =15,
N# = NB. Consequently, with f# and fP added, the two subgraphs coincide on
the Gaussian sphere. By mathematical induction, the connected EGI's of A and B

are the same up to rotation.
Thus, by the Uniqueness Theorem 4.1, A.and B are congruent. @Q.E.D.

By selecting different coeflicients k., kj, k4, we can make either kind of de-
formation to have a smaller or greater work. Therefore, we can obtain different
correspondences, which may result in morphing more involved in a certain kind of

deformation.

1As a reminder, €3, is the outface normal parallel to face f; and points towards the exterior
of fi; 0c,4 is the outface angle from e; . into €5 , about Ny; l; 4 is the dihedral angle between the

faces fp and f,. See page 38 for details.
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7.1.3 Metric Based on Connected EDI
(a) Definition

A shape metric based on the connected EDI for polyhedral models is also developed.
Let Wgp;(A, B) be the shape metric between A and B under correspondence .
The connected EDI is composed of the face adjacency graph, which contains the
unit outward face normals of the polyhedron, and the perpendicular distances from

the centers of gravity to the faces. W¥ (A, B) is defined by

n—1n-1n-1 1

Wgpi(A, B) = Z ZZOEDIDY > We(la,b,c) + Wp([7, 1)

a=0 b=0 ¢=0 1=0 j=1

3y

—

3|
|

[
Il

When VAG# and VAGP are not topologically equivalent, we define
Wgpi(A, B) = W.;Z,’p’DI(MAa MB) (7.8)

where M4, M2, ' are defined similarly in the definition of Wgai(A, B). Similarly,

the parameters k,, k;, and k4 are user-controllable.

(b) Properties
Property 7.4 Forany9,8 € [0,27], and vectors a,b, Wgp;(A%* BPP) = Wi, (A, B)
Property 7.5 For any wvectors x,y, Wgp(Ax, By) = WEp (A, B)

Property 7.6 When k., ks, and ky are not equal to zero, WSp (A, B) = 0 if and
only if A and B are congruent.

Proof: When A and B are congruent, WZ;(A, B) is obviously equal to zero.

If Wgpi(A,B) =0, and k,, ks, and ky are not equal to zero, then

WE(A,B) = 0 (7.9)
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W¢(A,B) = 0and (7.10)

WE(A,B) = 0 (7.11)

WE(A, B) = 0 means that all the corresponding faces have the same perpendic-
ular distance from the centers of gravity of A and B respectively. W35(A,B) =0
means that all the corresponding dihedral angles are the same; and WE(A,B) =0
means that all the corresponding interior angles are the same. By the same argu-
ment in the proof of Property 7.3, the connected EDI of A are the same as that of
B up to rotation. Thus, by the Uniqueness Theorem 4.3, A and B are congruent.
Q.E.D.

Similarly, by selecting different coefficients k,, ks, kg, we obtain different corre-

spondences.

7.2 The Searching Algorithm

The problem of establishing a correspondence involves searching for all possible
correspondences between two given input polyhedral models such that the corre-
spondence is valid and the the work done metric is minimized. One possible way to
do so is to carry out parallel breadth-first search on the the vertex adjacency graphs
of A and B as in the super-object approach [5]. Unfortunately, it is still unknown
how to do the searching efficiently; and the search for all possible correspondences

has not been implemented.
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Chapter 8

Conclusions and Future Research

While the criteria for morphing can be artistic, this thesis proposes the basic cri-
teria that a morphing algorithm should satisfy — identity preserving, rotation in-
variant, translation invariant, and feature preserving, and introduces the intrinsic
parameters into metamorphosis algorithms. This work also applies the the intrinsic
shape parameters by presenting the two-phase intrinsic interpolation algorithm to
3-D morphing of polyhedral models. The algorithm is based on two graph-based
representations of polyhedral objects — the vertex adjacency graphs, and the face
adjacency graphs — and the intrinsic shape parameters to describe the interrelation
between nodes in the graphs. The two-phase interpolation algorithm is translation
and rotation invariant, and is identity preserving if the correspondence is the iden-
tity correspondence. It has also been demonstrated in practice that the two-phase
intrinsic interpolation algorithm preserves the features common to both input ob-
jects and avoids the shrinkage that usually occurs in morphing two identical objects

with different orientations by the linear vertex path.

Valid general correspondences for polyhedral models is formulated. Based on the
proposed criteria and the intrinsic representation for the polyhedral models, shape

difference metrics for the correspondence problem are also proposed.
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8.1 Future Research

The interpolation of FAG or VAG in the two-phase interpolation algorithm is one-
pass and depends on the order of computation, or the order of searching uncomputed
nodes. To eliminate the computation order dependence, methods based on global
optimization may be worth investigating. There is no guarantee that the in-between
object produced by the two-phase intrinsic interpolation algorithm does not have
self-intersection. Up to now, no known published work on the interpolation problem
has effectively solved this problem. This still remains an open problem for future

research in metamorphosis.

Making an exhaustive search to solve the correspondence problem is an imprac-
tical solution. The future research includes finding an efficient searching algorithm

for the minimization of shape difference in the correspondence problem.
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